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Abstract
In this paper, we focus on estimating the causal effect of an
intervention over time on a dynamical system. To that end,
we formally define causal interventions and their effects over
time on discrete-time stochastic processes (DSPs). Then, we
show under which conditions the equilibrium states of a DSP,
both before and after a causal intervention, can be captured
by a structural causal model (SCM). With such an equiva-
lence at hand, we provide an explicit mapping from vector
autoregressive models (VARs), broadly applied in economet-
rics, to linear, but potentially cyclic and/or affected by unmea-
sured confounders, SCMs. The resulting causal VAR frame-
work allows us to perform causal inference over time from
observational time series data. Our experiments on synthetic
and real-world datasets show that the proposed framework
achieves strong performance in terms of observational fore-
casting while enabling accurate estimation of the causal ef-
fect of interventions on dynamical systems. We demonstrate,
through a case study, the potential practical questions that can
be addressed using the proposed causal VAR framework.

1 Introduction
Dynamical systems often exhibit complex behaviors that
unfold over time, leading to delayed responses and feed-
back loops. Importantly, understanding the causal effect of
interventions within such systems is crucial across disci-
plines such as climate (Runge et al. 2019) and social sci-
ences (Wunsch et al. 2022), where different time scales play
a central role. For instance, monetary policy adjustments
may have immediate effects on consumer spending, but their
impact on inflation, employment, and economic growth only
becomes evident in the medium-/long-term. Similarly, the
consequences of human actions on climate change may take
decades to manifest, with the risk of endorsing public poli-
cies that underestimate their relevance. To address these is-
sues, it is essential to estimate the causal effect of interven-
tions, or generally, to perform causal inference over time.

From the perspective of causality, Structural Causal Mod-
els (SCMs) provide a formal framework to perform causal
inference from cross-sectional data. However, adapting ex-
isting methods to capture temporal dynamics remains a chal-
lenge (Bongers et al. 2021). Alternatively, temporal mod-
els, such as autoregressive models, offer practical methods
for time-series analysis and forecasting (Lütkepohl 2005),
but their formalization of causal effects is limited. First,

they model interventions as shocks applied at a specific
point in time, with effects that fade away after a certain pe-
riod (Hyvärinen et al. 2010; Moneta et al. 2011). Second,
they rely on Granger causality (Granger 1969) which is con-
cerned with how well one variable can predict another rather
than identifying causal relationships between them.

Our work combines the strengths of both frameworks, i.e.,
SCMs and autoregressive models, to enable robust reason-
ing about the causal effect of interventions on dynamical
systems over time. To that end, we first introduce a formal
definition of causal interventions on discrete-time stochastic
processes (DSPs), proposing two alternatives, additive and
forcing interventions. Second, we establish conditions under
which the equilibrium state of a DSP can be represented by
an SCM. Third, we develop a framework that maps VARs
to linear SCMs, handling potentially cyclic structures and
unmeasured confounders. Finally, our practical framework
for causal inference over time from observational time-series
data is empirically validated on synthetic and real-world
datasets.

Related work The works most closely related to ours
are these from Mooij, Janzing, and Schölkopf (2013) and
Bongers, Blom, and Mooij (2018), as they theoretically con-
nect dynamical systems to the causal semantics of SCMs
via the equilibration of deterministic and random differ-
ential equations, and thus are capable of modeling cyclic
causal mechanisms (Bongers et al. 2021). Our approach
differs from this line of work in two key aspects: i) we
focus on discrete-time dynamical systems parameterized
using stochastic equations which, as stated by Bongers,
Blom, and Mooij (2018), become particularly challenging
for continuous-time processes; and ii) our mapping from au-
toregressive DSPs to SCMs provides not only a theoretical
but also, to the best of our knowledge, the first data-driven
framework for performing causal inference over time in dy-
namical systems.

2 Preliminaries and background
2.1 Structural Causal Models
Equation A SCM M = (F,E) determines how a
set of d endogenous (observed) random variables X :=
{X(1), . . . , X(d)} are obtained from a set of exogenous
variables E := {E1, . . . , Ed}, with prior distribution



p(E), via a set of structural equations F := {X(i) :=

fi(PA
(i),E(i))}di=1. Each fi computes X(i) from its causal

parents1 PA(i) ⊆ X and a set E(i) ⊆ E. We refer to X

as a solution of M. We assume PA(i) to be minimal, i.e., it
only contains variables X(j) such that ∂X(j)fi ̸= 0. This
formulation extends the definition in (Pearl 2009) to include
cycles as in (Bongers, Blom, and Mooij 2018).

Graph A SCM M induces a directed graph GM = (V, E)
that describes the functional dependencies in F: V is the set
of nodes for which Vi represents X(i) and E is the set of the
edges (Vi, Vj) ∈ E ⇐⇒ X(i) ∈ PA(j).

Intervention Besides describing the observational distri-
bution p(X), SCMs allow answering interventional queries
about the effect of external manipulations, and enable coun-
terfactual queries assessing what would have happened to
a particular observation if one observed variable X(i) had
taken a different value. An intervention I on a SCM M
yields a new SCM MI for which one or more mech-

anisms fi(PA
(i),E(i)) change to f̃i(P̃A

(i)
, Ẽ(i)), where

P̃A
(i) ⊆ PA(i) and Ẽ(i) ⊆ E(i). We refer to a hard in-

tervention when fi is replaced by a constant value α(i), and

P̃A
(i)

= Ẽ(i) = ∅. This type of intervention is denoted by
the do-operator do(X(i) = α(i)). On the other hand, we re-
fer to a soft intervention when at least one argument of fi is
retained. The causal effect CE of an intervention is evaluated
in terms of differences between the values of the observable
variables before and after the intervention I, i.e.,

CEI = E[XI −X]. (1)

2.2 Discrete-time Stochastic Processes
A discrete-time (vector) stochastic process (DSP) is a func-
tion X : T × Ω → Rd where t ∈ T is a time in-
dex in Z, such that Xt (which denotes X(t, ·)) is a ran-
dom variable on a probability space (Ω,F ,P). We refer to
X(ω) (which denotes X(·, ω)) as a realization or trajec-
tory of X and denote the i-th component of X with X(i).
Every DSP can be described through a difference equation
(DE), i.e., a recurrence relation that allows computing Xt

based on its past values. DEs can be categorized into three
types (Bongers, Blom, and Mooij 2018): ordinary differ-
ence equations (ODE) describing deterministic processes;
random difference equations (RDE), which involve random-
ness in the initial state X0 and in the evolution parameters
(see App. A); and stochastic difference equations, which de-
scribe inherently stochastic trajectories.

Equation A stochastic difference equation (SDE) de-
scribes a DSP via a functional relationship of the form

Xt = f(X<t) + g(X<t)⊙ εt, (2)

where X<t := {Xt−1,Xt−2, . . . } represents the trajec-
tory up to time t, f represents the system’s deterministic

1Unlike in acyclic SCMs, PA(i) loses its hierarchical interpre-
tation since two nodes can be mutually parents.

mechanism, and the Hadamard product g ⊙ εt is the inho-
mogeneous stochastic part, where εt denotes white noise,
i.e., ∀t, t′ ∈ T E[εt] = 0,E[ε2t ] = Σ2

ε,E[εtεt′ ] = 0.
While for ODEs and RDEs trajectories X(ω) may asymp-
totically converge to an equilibrium, SDEs cannot exhibit
such convergence due to the ongoing influence of g ⊙ εt.

Graph Analogously to SCMs, we can associate a directed
graph GD to a DE D, consisting of nodes Vi representing in-
dividual components X(i), while an edge (Vi, Vj) is present
if ∃k > 0 such that ∂

X
(i)
t
X

(j)
t+k ̸= 0 in D.2

2.3 Vector Autoregressive models
In this paper, we focus on a specific type of SDE, the VAR
model (Kilian and Lütkepohl 2017).

Equation Consider a d-dimensional vector-valued sta-
tionary time series {X0, . . . ,XT } generated by a VAR
model with lag p, where a lag represents the number of pre-
vious time steps used to predict the current value of each
variable. Specifically, the VAR(p) model is defined by

Xt = ν +A1Xt−1 + · · ·+ApXt−p + ut, (3)

where ν is a d-dimensional vector of intercept terms,
{Ai}pi=1 are (d × d) matrices and ut is a d-dimensional
white noise term. If the process Xt is stable and station-
ary (Hamilton 1994), Equation 3 can also be written as

A(L)Xt = ν + ut,

with A(L) := Id −A1L− · · · −ApL
p,

(4)

where L is the lag operator such that LXt ≡ Xt−1 and Id
is a d-dimensional identity matrix.

A key limitation of VARs is the inability to interpret the
system in causal terms since the components of ut are cross-
correlated and act as hidden confounders. A common ap-
proach to overcome this problem is to orthogonalize the
noise terms. In this context, the process of causal discovery,
i.e., inferring the causal structure of the data, is analogous to
the one of SCMs (Hyvärinen et al. 2010; Moneta et al. 2013;
Geiger et al. 2015; Malinsky and Spirtes 2018), and involves
identifying a triangular matrix Â0 such that εt = Â0ut

consists of mutually uncorrelated elements. The transformed
VAR, commonly known as the Structural VAR (SVAR)
model in the literature (Kilian and Lütkepohl 2017), is de-
fined by Â0Xt = Â0ν + Â1Xt−1 + · · ·+ ÂpXt−p + εt,

where Âi = Â0Ai. From a modeling perspective, VAR
and SVAR are equivalent, as any SVAR can be expressed
in its reduced-form VAR by computing Ai = Â−1

0 Âi for
i = 0, . . . , p in Eq. 3. Notably, choosing one over the other
does not affect its causal interpretation, provided that Â0 is
known. For simplicity, in this work, we adopt the VAR no-
tation, to introduce a novel framework for causal inference
over time, which complements the SVAR’s causal discovery
approach.

Graph An edge (Vi, Vj) is present iff ∃k.Ak[i, j] ̸= 0.

2Depending on the type of DE, the derivative must be evaluated
with respect to fi or with respect to both fi and gi (see Equation 2).



3 Causal perspective on Discrete-time
Stochastic Processes

This section provides the theoretical basis for causal infer-
ence over time. First, we formally define causal interven-
tions on SDEs (§3.1). Then, we show how a SCM can be
considered a compressed description of the asymptotic be-
havior of an underlying dynamical system (§3.2).

3.1 Causal Interventions on SDEs
We define an intervention I on a SDE D as a modification of
one or more component equations denoted by the mapping:

I : fi(PA
(i)
<t) + gi(PA

(i)
<t)⊙ εt 7−→

f̃i(P̃A
(i)

<t) + g̃i(P̃A
(i)

<t)⊙ εt, ∀t ≥ tI
(5)

where P̃A
(i)

<t ⊆ PA
(i)
<t. Unlike SCMs, the intervention ap-

plies starting from a specific time tI . In other words, the
process follows the original equations for t < tI and the
modified ones for t ≥ tI . We denote the modified SDE as
DI to generalize Eq. 1 to account for time. To differentiate
between interventions on a SCM M and on a SDE D, IM
and ID will be respectively adopted when necessary.
Definition 1 (Causal Effect over time (CEt)). Let X be a
solution of a specific SDE D. We define the causal effect at
time t of an intervention I as

CEIt := E[XI
t −Xt|X<tI ], (6)

where XI is the solution of the modified SDE DI .
The interpretation of CEIt is closely related to the causal

effect of an intervention on a SCM (Eq. 1), CEI : while the
latter measures the causal effect of an exogenous interven-
tion, CEt does so for any time step t of the DSP, i.e., it mea-
sures the causal effect of an intervention over time. Impor-
tantly, as we will show in the next section, CEIt → CEI as
t → ∞, i.e., there is an asymptotic correspondence between
the two quantities.

3.2 Mapping SDEs to SCMs
Given an SDE D and its solution X , we study the conditions
on D such that: i) Xt converges in distribution to X∞ as
t → ∞; and ii) there exists an SCM M such that X∞ is
a solution of M and, for every intervention I, it holds that
(X∞)IM = (XID )∞. While i) is automatically satisfied
by any finite memory stationary process, ii) requires more
careful analysis, as discussed below.

A negative result from (Janzing, Rubenstein, and
Schölkopf 2018) Consider the stable bivariate system de-
fined by the equations Xt = εxt , Yt = 0.5 · Xt−1 + εyt .
For every t, Xt and Yt are independent of each other. Con-
sequently, the joint distribution p(Xt, Yt) cannot capture
the causal dependencies of the system (X causes Y ). The
lack of causal information in the cross-sectional dimension
arises because the variables are localized in time; their val-
ues change rapidly, leading to minimal or no correlation with
their past values. On this specific point Janzing, Rubenstein,
and Schölkopf (2018) provide an explicit negative result:

D Xt DT Zt M Z∞

DI XI
t DI

T ZI
t MI ZI

∞

T t → ∞

T t → ∞

I I

Figure 1: T -transformation transfers causal information
from the temporal to the cross-sectional dimension, and thus
to the joint distribution P (Zt). The diagram commutes, i.e.,
red and blue paths produce the same result.

without first making the variables de-localized in time, there
is no SCM that can capture the SDE. In fact, our definition
of intervention (Eq. 5) acts on a variable of the system for a
prolonged and indefinite period.

T -transformation To overcome this limitation, (Janzing,
Rubenstein, and Schölkopf 2018) propose a transformation
of Xt based on a frequency analysis of the time series.3
Instead, our choice is inspired by the long-run normalized
mean via the transformation T : DSP 7→ DSP defined by

T (X)t := Zt = µ+
1√
t

t∑
i=1

(Xi − µ), (7)

where µ := E[X].4 Moreover, E[Z∞] = E[X∞] = µ so
that for every intervention I, CEI∞ (Eq. 6) yields the same
values. However, unlike X , Z can be mapped into an SCM
that precisely models its distribution shift over any interven-
tion, thereby satisfying property ii), represented as the com-
mutativity of the diagram in Fig. 1.

It is important to clarify that Zt is not the process of in-
terest, and the focus of the causal analysis remains on Xt.
However, due to the equivalence of long-run causal effects
calculated in both processes, and the ability to associate Zt

with the SCM that models these effects, Zt serves as a
convenient intermediate mathematical tool. To demonstrate
how this transformation ensures these desirable properties,
we will focus on the subclass of linear systems, particu-
larly on VAR models. The reason for this choice is twofold.
First, linear models, despite their simplicity, are still on par
performance-wise with state-of-the-art Machine-Learning
based forecast techniques (Toner and Darlow 2024), in par-
ticular when dealing with stochastic time series (Parmezan,
Souza, and Batista 2019). Second, the mathematical treat-
ment of interventions and the estimation of causal effects
is particularly straightforward to implement and interpret,
making this a useful first step for a possible extension to the
nonlinear case.

3Our Zt (Eq. 7) can also be interpreted as a form of discrete
Fourier transform of the time-series X1:t with frequency zero.

4The expectation here is taken over time as well. Nonetheless,
for stationary processes, this simplifies to E[X] = E[Xt] for all t.



4 From Vector Autoregressive models to
Structural Causal Models

In this section, we show that linear SCMs can model the
long-term effects of stable VARs, explaining the properties
of its DSP equilibrium (§4.1). Then, we provide implemen-
tations of two types of causal interventions, leveraging the
strengths of the VAR framework (§4.2). Finally, we discuss
the practical implications of our theoretical results (§4.3).

4.1 Mapping from VARs to SCMs
We provide the explicit mapping from VARs to linear SCMs
in the following theorem (proved in App. B.2).
Theorem 1. Given a stable VAR(p) D defined by Eq. 3,
there exists a linear SCM M with structural equations 5

X̃ = ÃX̃ + ũ,

where Ã := [A1 + · · ·+Ap] and ũ ∼ N (0,Σũ),
(8)

such that, given the transformation Zt =
1√
t

∑t
i=1 Xi, the

following properties hold:
1. D and M share the same causal graph, i.e., GM = GD;
2. The observational distribution induced by D at equilib-

rium p(Z∞) is equal to the one induced by M, p(X̃);
3. The interventional distribution p(ZI

∞) is equal to the one
induced by the same intervention on M, p(X̃IM).

Remark. Note that due to the influence of time in VARs,
the equivalent SCMs at equilibrium, while linear, may lead
to cycles in the causal graph (see, e.g., Fig. 2c) and correla-
tions between the exogenous variables, captured by the full
covariance matrix Σũ in Eq. 8. Note also that the above The-
orem implies that there is a direct relationship between in-
terventions on DSPs, I, and interventions on SCMs, here
denoted by IM. Refer to App. B.2 for further details.

4.2 Implementation of Causal Interventions
Different application scenarios may need different types of
interventions. Consider a government’s fiscal policy. In such
a setting, a feasible approach would be to implement an ad-
ditive intervention in the form of an annual tax increase of,
e.g., 300 euros per household on top of existing taxes. Al-
ternatively, in other scenarios, e.g., when studying the ef-
fect of the key European Central Bank’s interest rate (Belke
and Polleit 2007), a more natural choice is to implement a
forcing intervention that enforces the convergence of an ob-
served variable (e.g., interest rate) to a target value. In the
following, we propose an implementation for VARs of these
two forms of interventions, showing their effects on the sys-
tem and discussing their stability conditions.

Additive Interventions Given a stable VAR(p) as in
Eq. 4, we define an additive intervention Ia at time tI with
force F as the mapping:

Ia :A(L)Xt = ν + ut 7−→
A(L)Xt = ν + ut + I(t ≥ tI)F ,

(9)

5For simplicity we set ν = 0, i.e., we assume E[Xt] = 0. The
theorem applies in the general case up to a translation of both the
VAR and the associated SCM.

where I(t ≥ tI) is the indicator function, which equals 1 if
t ≥ tI , otherwise 0. In other words, we perform a trans-
lation while keeping the process dynamics unchanged. In
such case, the temporal causal effect CEt is deterministic and
takes values CEt = 0 for t < tI while, for k ≥ 0:

CEtI+k =

k∑
l=0

ΦlF ,

where Φ is the impulse response function of the VAR model.
Refer to App. B.1 for further details.
Remark. For this type of intervention, CEt is deterministic
and does not depend on the specific trajectory. The same
property can be observed on the linear SCM associated with
the process, defining the intervention in a similar way: X̃ =
ÃX̃ + ũ changes into X̃ = ÃX̃ + F + ũ.

Stability Additive intervention preserves the stability re-
gardless of the value of F , since A(L) does not change. See
App. B.1 for stability conditions of VARs.

Forcing Interventions We define a forcing intervention
If at time tI with force F and target value X̂ as:

If : A(L)Xt = ν + ut 7−→
A(L)Xt = ν + ut + I(t ≥ tI)F ⊙ (X̂ −Xt).

(10)

We assume F to be positive in each component. This in-
tervention acts as an attraction towards X̂ , and F modulates
the intensity of the attraction force. Applying an intervention
on a single component X(i) toward the fixed value X̂ and
letting F (i) → +∞ yields the do operator do(X(i) = X̂).
We refer to (Mooij, Janzing, and Schölkopf 2013) for a de-
tailed discussion of this point.

Stability Forcing interventions If perturb the system dy-
namics by modifying the operator A(L). Specifically, by
shifting the term F ⊙ Xt to the left of the equation and
rewriting it in matrix form as FdiagXt, we obtain Ã(L) :=
A(L)+Fdiag . Hence, the stability of the intervened system
is not guaranteed (we provide an example in App. B.3), and
it is necessary to verify that all the eigenvalues of Ã(L) are
still inside the unit circle. Intuitively, the stability of an ob-
servational system often relies on negative feedback loops.
Fixing one variable can disrupt this balance, leading to run-
away behavior. For example, turning off a pressure release
valve in a pressurized tank can cause the pressure to build
up uncontrollably, eventually leading to an explosion.

4.3 Practical implications
Causal queries Our formulation of causal interventions
on VARs differs from the standard approach based on
Granger causality by being closer to that of SCMs. Con-
sequently, it enables the generalization of interventional and
counterfactual queries to account for time (see App. C). That
is, it allows for answering the following causal questions:

• Forecasted Interventions What are the expected effects
on an individual trajectory (or a population) when inter-
vening in the present, and how do they vary over time?



• Retrospective Counterfactuals What would have hap-
pened to an individual trajectory if an intervention had
been applied at a specific point in the past? What state
would it be in now?

Both causal queries acquire a meaning embedded in the tem-
poral dimension in terms of forecasting for the future (§5.2)
and retrospection for the past (App. D.3), respectively.

Expressiveness and universality VARs, despite their lin-
earity, possess a high level of expressiveness (Kilian and
Lütkepohl 2017). In fact, the Wold decomposition Theorem
(Wold 1938) implies that the dynamics of any purely non-
deterministic covariance-stationary process can be approx-
imated arbitrarily well by an autoregressive model, making
them universal approximators. In practice, linear autoregres-
sive models are broadly used in time-series analysis. Yet, we
intend to explore non-linear DSPs in future work, as they
may lead to better convergence rates and allow for causal
interpretation of a broader family of dynamical models.

Feedback loops To properly understand complex systems,
it is often useful to model feedback loops between their vari-
ables. Time-series models naturally capture this property,
while SCMs require significant reformulation. The theory
of cyclic SCMs has seen a significant advancement in recent
years (Bongers et al. 2021), but practical approaches, both
for causal discovery and causal inference, are still underde-
veloped (Bongers et al. 2016; Lorbeer and Mohsen 2023).
Our formalization of causal inference on VARs is a step for-
ward in this direction.

Fitting VARs estimation is typically performed using or-
dinary least squares. Various alternative methods are avail-
able, both in terms of constrained optimization (e.g., to use
prior knowledge about some coefficients of the VAR matri-
ces (Sims 1980)) and within a Bayesian framework (Koop,
Korobilis et al. 2010). Refer to (Lütkepohl 2005, chap-
ters 3,4,5) for a comprehensive discussion. Importantly, al-
though VARs are most commonly used on time-series data
(i.e., data from one single unit across a period of time), there
are approaches tailored to the analysis of panel data (i.e.,
the evolution of many units over time) (Sigmund and Ferstl
2021); and cross-sectional data (i.e., many individuals at a
single point of time), provided that they have at least some
proxy variables of time (Deaton 1985). Such approaches
open up a promising line of future work that can further gen-
eralize VARs applicability for causal reasoning over time.

5 Empirical evaluation
In this section, we evaluate VAR models’ accuracy and ex-
pressiveness in multivariate time series, focusing on two
forecasting dimensions: observational (§5.1) and interven-
tional (§5.2). Additional results and in-depth descriptions
can be found in App. D.

Datasets We rely on two synthetic datasets, German6 and
Pendulum, and the real-world Census dataset7. German sim-

6This dataset is inspired on https://archive.ics.uci.edu/dataset/
144/statlog+german+credit+data

7https://data.census.gov/
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Figure 2: Causal graphs. The causal graph for (a) and (b) is
known, while for (c), it is assumed. In (b), nodes are labeled
with the initials of each feature: Expertise, Responsibility,
Loan Amount, Duration, Income, Savings, and Credit Score.
In (c), 0− 14, 15− 64, and 65− 99 represent age groups.

ulates a loan approval scenario with seven variables. Pendu-
lum is a two-variable system where X(1) operates as a sta-
bilizer for X(2), which exhibits a divergent dynamic. Cen-
sus includes demographic variables across three age groups,
along with migration, birth, and death rates from 1992 to
2023 for 50 countries. Fig. 2 illustrates the causal graphs for
all datasets. See App. D for further details.

Metrics We measure the discrepancy between the h-steps
forecast X̂t+h|X<t and the true value Xt+h on the test set
Xtest. We report Mean Absolute Error (MAE) focusing on
the target variables (i.e., Credit Score for German, X(1) for
Pendulum, and age groups for Census). See App. D.1 for
other metrics. All results are averaged over ten runs.

5.1 Observational Forecasting
Baselines We compare VAR with three relevant works:
i) DLinear (Zeng et al. 2023), a decomposition-based lin-
ear model that separates trend and seasonal components; ii)
TSMixer (Chen et al. 2023), a Multi-layer Perceptron (MLP)
based model that focuses on mixing time and feature dimen-
sions; iii) TiDE (Das et al. 2023), a MLP based encoder-
decoder model. To assess the effectiveness of the forecast-
ing methods, we introduce an observational oracle forecaster
that has full knowledge about the true data generating pro-
cess and produces the optimal predictor, i.e., X̂t+h|X<t =
E[Xt+h|X<t].

How does the VAR performance compare with SOTA
models for forecasting multivariate time series? The
observational forecasting results in Table 1 show perfor-
mance across varying data sizes (i.e., number of instances)
and forecast horizons for all datasets. VAR emerges as the
top-performing model, consistently matching or closely ap-
proaching Oracle’s scores for all datasets. DLinear usually
achieves predictive accuracy close to VAR for 1-step fore-
casts, presumably due to the common linear nature of both
models. TiDE and TSMixer consistently underperform com-
pared to VAR and DLinear for German and Pendulum. For
all models (including Oracle), performance on the Pendulum
dataset is uniformly worse than on the German, highlight-
ing the greater challenge in forecasting given the system’s
stronger stochasticity and variables changing more rapidly
over time. On Census, VAR and TiDE provide the best re-
sults, TiDE slightly outperforming VAR in 5-step horizon.
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Figure 3: Additive Intervention. (Left) Intevention on Exper-
tise with F = 0.2. (Right) Effect on Credit Score. Shaded
regions in both plots denote 95% confidence bounds.
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Figure 4: Forcing Intervention. (Left) Intevention on Exper-
tise with F = 1 and target Ê = 5. (Right) Effect on Credit
Score. Note that confidence bounds are narrower w.r.t. Fig. 3.

Table 1: Observational Forecasting. MAE scores (lower
is better) for VAR, DLinear (Zeng et al. 2023), TiDE (Das
et al. 2023) and TSMixer (Chen et al. 2023). Results aver-
aged over 10 runs. Due to space limitations, standard devia-
tions are reported in App. D.1. Best model in bold, Oracle in
typewriter. For Census, size equals the number of coun-
tries times the number of years.

Observational Forecasting

Dataset Size Horizon Oracle VAR DLinear TiDE TSMixer

German

100
1

.004 .008 .009 .011 .014

Pendulum .042 .043 .043 .218 .217

German
10

.014 .055 .055 .094 .139

Pendulum .399 .420 .440 1.43 1.43

German

500
1

.004 .004 .004 .011 .014

Pendulum .042 .042 .042 .218 .217

German
10

.014 .015 .015 .093 .135

Pendulum .399 .401 .405 1.43 1.43

Census 50× 32
1 - .001 .006 .001 .008

5 - .017 .025 .014 .024

5.2 Interventional Forecasting
We evaluate the causal VAR’s forecast in estimating the
causal effects on German. See App. D.2 for other datasets.

Baselines Since state-of-the-art methods do not allow
computing the causal effect of interventions on dynam-
ical systems, we use an oracle forecaster as a bench-
mark for theoretically optimal performance. Specifically,
the ground truth values are estimated as CEt+h =
E[XI

t+h −Xt+h|X<t], while the predicted values from the
proposed VAR framework as ĈEt+h = (X̂I

t −X̂t+h)|X<t.

Interventions We perform causal interventions on the root
node Expertise and observe the effect on the target variable
Credit Score. For the additive case, we apply F = 0.2, while
for forcing, we use F = 1 with a target value of Ê = 5.

Table 2: Interventional Forecasting. MAE scores (lower is
better) for the proposed causal VAR framework on the Ger-
man dataset. Results averaged over 10 runs, with standard
deviation in subscript. Scores are scaled by a factor of 102
to ease readability.

Interventional Forecasting

Dataset Size Horizon Additive Forcing

German
100 1 .000.000 .000.000

10 .043.028 .364.297

500 1 .000.000 .000.000
10 .018.014 .115.081

These values are selected for illustrative purposes such that
the long-term expected value of Expertise is the same for
both interventions (i.e., 5). See App. D.2 for other variants.

How do additive and forcing interventions affect the sys-
tem dynamics? Fig. 3 illustrates the additive interven-
tion. Expertise is a variable that typically necessitates sev-
eral years for acquisition in practical scenarios. The causal
VAR accurately captures such delayed impact as its effect
on Credit Score appears after several years. As the system
maintains its dynamic characteristics unchanged, the fore-
casted covariance remains the same even after the interven-
tion. Fig. 4 shows the forcing intervention, where the inter-
ventional forecasting exactly aligns with the target value.
Moreover, we stress that even for a low value of F , the
forcing intervention resembles a do-intervention (shrinking
the variances significantly) even though theoretically con-
vergence is guaranteed only for F → ∞.

How accurate is the causal VAR framework in estimat-
ing the causal effect of interventions over time? Table 2
summarizes results on interventional forecasting, showing
errors with varying data size and forecast horizons. At 1-
step, both interventions lead to perfect performance since
Credit Score is a slow-changing variable and requires at least
3 time steps for an intervention to take effect. At 10-step, our
causal effect estimates remain highly accurate.
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Figure 5: German. Effect of increasing Expertise on Credit
Score. (Left) The time each loan applicant takes to cross or not
the acceptance threshold. The histogram shows the distribu-
tion of crossing times. (Right) Comparison of two loan appli-
cants, i.e., trajectories, with similar scores at intervention time.
After the intervention, they diverge significantly, with only an
applicant being accepted at the maximum time. Forecasts are
dashed for observational and dotted for interventional.
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Figure 6: Census. Additive intervention across all countries.
(Left) Intervention on Births with F = 0.004 and its effect on
the population’s average age. (Right) Intervention on Migra-
tion with F = 0.04 and its effect on Births. In both plots, we
highlight two countries (one above and one below the mean)
to illustrate the differences after the intervention. Forecasts are
dashed for observational and dotted for interventional.

6 Use cases
In this section, we show real-world scenarios where estimat-
ing causal effects over time represents a useful step toward a
realistic modeling of the phenomena. We focus on the Ger-
man and Census datasets, presenting two analyses for each.
For German, Fig. 5 illustrates the effect of increasing Exper-
tise by F = 0.38 on Credit Score.

German 1 – Same intervention, different outcomes.
The left panel of Fig. 5 shows the distribution of the time
required for loan applicants to cross or not the acceptance
threshold after the intervention. Access to this information
allows quantification of intervention efficacy, identification
of credit-building patterns, and infer the key factors influenc-
ing loan eligibility outcomes. It can also inform the recom-
mendation of actions (e.g. in algorithmic recourse (Karimi
et al. 2022)) within a reasonable timeframe, fostering trust
in the system and promoting user acceptance.

German 2 – Similar cross-sectional values, different
causal effects over time. The right panel of Fig. 5 shows
trajectories that, while seeming similar at a given time, may
have significantly divergent historical and future behaviors.
For instance, the green trajectory may have autonomously
crossed the threshold without intervention, whereas in the
case of the yellow one, the applied intervention may be inad-
equate to ensure the desired outcome. Such divergence high-
lights the importance of moving beyond models that rely
only on cross-sectional data, motivating the need for tech-
niques, such as the proposed causal VAR framework, that
capture individual applicant behavior over time.

For Census, Fig. 6 presents two additive interventions
across all countries.

Census 1 – Impact of Births on Avg. Age. The left panel
of Fig. 6 shows the increase on Births with F = 0.004 and
its effect on the population’s average age (computed as a
weighted mean of age groups). The force value means that
Births increase by 0.4% of each country’s total population

every year. Examining how they affect population age over
time could allow policymakers to identify which countries
might benefit most from specific types of demographic in-
terventions and evaluate the long-term viability of systems.
We can also observe that the intervention in Japan causes a
more evident decrease in the average age than in Chile.

Census 2 – Impact of Migration on Births. The right
panel of Fig. 6 reports how a 4% growth in Migration w.r.t.
the total population influences Birth rates. We observe that
increased migration leads to a rise in births. However, its
impact is less evident (observational and interventional fore-
casting trajectories are closer) compared to the result on the
average age shown in Fig. 6 (left panel).

7 Concluding remarks
In this work, we have established a link between discrete-
time dynamical systems at equilibrium and SCMs. More-
over, we have provided an explicit procedure for mapping
VARs to linear SCMs and demonstrated that, under specific
model stability conditions, interventions on the dynamical
system and the SCM yield equivalent results. To conduct
causal inference over time, we have introduced two classes
of interventions (additive and forcing) for VARs.

Limitations When systems exhibit strongly nonlinear dy-
namics, linear VARs may prove less effective than alter-
native nonlinear approaches. Moreover, our framework re-
quires prior knowledge of the causal graph. In scenarios
where this information is lacking, the process of causal dis-
covery can present significant challenges.

Future work We will investigate the use of non-linear
DSPs, as they may lead to better convergence rates and al-
low for causal interpretation of a broader family of dynam-
ical models. Moreover, our work opens several interesting
research directions (§4.3 for concrete examples) and appli-
cations (e.g. causal inference over time in high-dimensional
contexts such as climate science).
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